Synchronous Digital Hierarchy
A diagram of the relationships between objects in an SDH (Synchronous Digital Hierarchy) network. This graph was created to show a multiplicity of semantic relationships in a single graph.
In the graph file, the setting of the global page size, graph layout size, aspect ratio (to fill the allowed layout size) and centering means that the layout will be placed in a box that is precisely 7.5" wide by 7" high and centered on an 8.5x11 page. The default node is to draw nodes unlabeled. Subgraphs are employed to mark sets of nodes to be placed on the same rank (level) in the layout, and as local scopes for node or edge attribute initialization.
[Input .gv File] [SVG] [Raster Image]
sdh.gv.txt
digraph G {
graph [bgcolor=black]; /* set background */
edge [color=white];
graph[page="8.5,11",size="7.5,7",ratio=fill,center=1];
node[style=filled,label=""];
subgraph ds3CTP {
rank = same;
node[shape=box,color=green];
ds3CTP_1_1;
ds3CTP_1_2;
ds3CTP_5_1;
ds3CTP_5_2;
}
subgraph t3TTP {
rank = same;
node[shape=invtriangle,color=red];
t3TTP_1_1;
t3TTP_5_2;
}
subgraph vc3TTP {
rank = same;
node[shape=invtriangle,color=red];
vc3TTP_1_2;
vc3TTP_5_1;
}
subgraph fabric {
rank = same;
node[shape=hexagon,color=blue];
fabric_1_2;
fabric_4_1;
fabric_5_1;
}
subgraph xp {
rank = same;
node[shape=diamond,color=blue];
xp_1_2;
xp_4_1;
xp_5_1;
}
subgraph au3CTP {
rank = same;
node[shape=box,color=green];
au3CTP_1_2;
au3CTP_4_1;
au3CTP_4_2;
au3CTP_5_1;
}
subgraph aug {
rank = same;
node[shape=invtrapezium,color=pink];
aug_1_2;
aug_4_1;
aug_4_2;
aug_5_1;
}
subgraph protectionTTP {
rank = same;
node[shape=invtriangle,color=red];
prTTP_1_2;
prTTP_4_1;
prTTP_4_2;
prTTP_5_1;
}
subgraph protectionGroup {
rank = same;
node[shape=hexagon,color=blue];
pg_1_2;
pg_4_1;
pg_4_2;
pg_5_1;
}
subgraph protectionUnit {
rank = same;
node[shape=diamond,color=blue];
pu_1_2;
pu_4_1;
pu_4_2;
pu_5_1;
}
subgraph protectionCTP {
node[shape=box,color=green];
prCTP_1_2;
prCTP_4_1;
prCTP_4_2;
prCTP_5_1;
}
subgraph msTTP {
rank = same;
node[shape=invtriangle,color=red];
msTTP_1_2;
msTTP_4_1;
msTTP_4_2;
msTTP_5_1;
}
subgraph msCTP {
rank = same;
node[shape=box,color=green];
msCTP_1_2;
msCTP_3_1;
msCTP_3_2;
msCTP_4_1;
msCTP_4_2;
msCTP_5_1;
}
subgraph rsTTP {
rank = same;
node[shape=invtriangle,color=red];
rsTTP_1_2;
rsTTP_3_1;
rsTTP_3_2;
rsTTP_4_1;
rsTTP_4_2;
rsTTP_5_1;
}
subgraph rsCTP {
rank = same;
node[shape=box,color=green];
rsCTP_1_2;
rsCTP_2_1;
rsCTP_2_2;
rsCTP_3_1;
rsCTP_3_2;
rsCTP_4_1;
rsCTP_4_2;
rsCTP_5_1;
}
subgraph spiTTP {
rank = same;
node[shape=invtriangle,color=red];
spiTTP_1_2;
spiTTP_2_1;
spiTTP_2_2;
spiTTP_3_1;
spiTTP_3_2;
spiTTP_4_1;
spiTTP_4_2;
spiTTP_5_1;
}
subgraph me {
rank = same;
node[shape=box,peripheries=2];
me_1;
me_2;
me_3;
me_4;
me_5;
}
subgraph client_server {
edge[style=dotted,dir=none,weight=100];
ds3CTP_1_1->t3TTP_1_1;
ds3CTP_1_2->vc3TTP_1_2;
au3CTP_1_2->aug_1_2->prTTP_1_2;
prCTP_1_2->msTTP_1_2;
msCTP_1_2->rsTTP_1_2;
rsCTP_1_2->spiTTP_1_2;
rsCTP_2_1->spiTTP_2_1;
rsCTP_2_2->spiTTP_2_2;
msCTP_3_1->rsTTP_3_1;
rsCTP_3_1->spiTTP_3_1;
msCTP_3_2->rsTTP_3_2;
rsCTP_3_2->spiTTP_3_2;
au3CTP_4_1->aug_4_1->prTTP_4_1;
prCTP_4_1->msTTP_4_1;
msCTP_4_1->rsTTP_4_1;
rsCTP_4_1->spiTTP_4_1;
au3CTP_4_2->aug_4_2->prTTP_4_2;
prCTP_4_2->msTTP_4_2;
msCTP_4_2->rsTTP_4_2;
rsCTP_4_2->spiTTP_4_2;
ds3CTP_5_1->vc3TTP_5_1;
au3CTP_5_1->aug_5_1->prTTP_5_1;
prCTP_5_1->msTTP_5_1;
msCTP_5_1->rsTTP_5_1;
rsCTP_5_1->spiTTP_5_1;
ds3CTP_5_2->t3TTP_5_2;
}
subgraph trail {
edge[style=dashed,dir=none];
vc3TTP_1_2->vc3TTP_5_1;
prTTP_1_2->prTTP_4_1;
prTTP_4_2->prTTP_5_1;
msTTP_1_2->msTTP_4_1;
msTTP_4_2->msTTP_5_1;
rsTTP_1_2->rsTTP_3_1;
rsTTP_3_2->rsTTP_4_1;
rsTTP_4_2->rsTTP_5_1;
spiTTP_1_2->spiTTP_2_1;
spiTTP_2_2->spiTTP_3_1;
spiTTP_3_2->spiTTP_4_1;
spiTTP_4_2->spiTTP_5_1;
}
subgraph contain {
pu_1_2->pg_1_2;
pu_4_1->pg_4_1;
pu_4_2->pg_4_2;
pu_5_1->pg_5_1;
xp_1_2->fabric_1_2;
xp_4_1->fabric_4_1;
xp_5_1->fabric_5_1;
fabric_1_2->me_1;
fabric_4_1->me_4;
fabric_5_1->me_5;
pg_1_2->me_1;
pg_4_1->me_4;
pg_4_2->me_4;
pg_5_1->me_5;
t3TTP_1_1->me_1;
t3TTP_5_2->me_5;
vc3TTP_1_2->me_1;
vc3TTP_5_1->me_5;
prTTP_1_2->me_1;
prTTP_4_1->me_4;
prTTP_4_2->me_4;
prTTP_5_1->me_5;
msTTP_1_2->me_1;
msTTP_4_1->me_4;
msTTP_4_2->me_4;
msTTP_5_1->me_5;
rsTTP_1_2->me_1;
rsTTP_3_1->me_3;
rsTTP_3_2->me_3;
rsTTP_4_1->me_4;
rsTTP_4_2->me_4;
rsTTP_5_1->me_5;
spiTTP_1_2->me_1;
spiTTP_2_1->me_2;
spiTTP_2_2->me_2;
spiTTP_3_1->me_3;
spiTTP_3_2->me_3;
spiTTP_4_1->me_4;
spiTTP_4_2->me_4;
spiTTP_5_1->me_5;
}
subgraph connectedBy {
vc3TTP_1_2->fabric_1_2;
au3CTP_1_2->fabric_1_2;
au3CTP_4_1->fabric_4_1;
au3CTP_4_2->fabric_4_1;
vc3TTP_5_1->fabric_5_1;
au3CTP_5_1->fabric_5_1;
prTTP_1_2->pg_1_2;
prTTP_4_1->pg_4_1;
prTTP_4_2->pg_4_2;
prTTP_5_1->pg_5_1;
prCTP_1_2->pg_1_2;
prCTP_4_1->pg_4_1;
prCTP_4_2->pg_4_2;
prCTP_5_1->pg_5_1;
}
subgraph crossConnection {
edge[style=dotted,dir=none];
vc3TTP_1_2->xp_1_2->au3CTP_1_2;
prTTP_1_2->pu_1_2->prCTP_1_2;
prTTP_4_1->pu_4_1->prCTP_4_1;
au3CTP_4_1->xp_4_1->au3CTP_4_2;
prTTP_4_2->pu_4_2->prCTP_4_2;
prTTP_5_1->pu_5_1->prCTP_5_1;
vc3TTP_5_1->xp_5_1->au3CTP_5_1;
}
subgraph bindingConnection {
edge[style=bold,dir=none,weight=100];
ds3CTP_1_1->ds3CTP_1_2;
vc3TTP_1_2->au3CTP_1_2;
prTTP_1_2->prCTP_1_2;
msTTP_1_2->msCTP_1_2;
rsTTP_1_2->rsCTP_1_2;
rsCTP_2_1->rsCTP_2_2;
rsTTP_3_1->rsCTP_3_1;
msCTP_3_1->msCTP_3_2;
rsTTP_3_2->rsCTP_3_2;
prTTP_4_1->prCTP_4_1;
msTTP_4_1->msCTP_4_1;
rsTTP_4_1->rsCTP_4_1;
au3CTP_4_1->au3CTP_4_2;
prTTP_4_2->prCTP_4_2;
msTTP_4_2->msCTP_4_2;
rsTTP_4_2->rsCTP_4_2;
prTTP_5_1->prCTP_5_1;
msTTP_5_1->msCTP_5_1;
rsTTP_5_1->rsCTP_5_1;
ds3CTP_5_1->ds3CTP_5_2;
vc3TTP_5_1->au3CTP_5_1;
}
}
Copyright © 1996-2004 AT&T. All rights reserved.
Last modified
June 14, 2021
: Update docsy theme (097a529)